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ABSTRACT

BACKGROUND/OBJECTIVES: Diet planning in childcare centers is difficult because of the 
required knowledge of nutrition and development as well as the high design complexity 
associated with large numbers of food items. Artificial intelligence (AI) is expected to provide 
diet-planning solutions via automatic and effective application of professional knowledge, 
addressing the complexity of optimal diet design. This study presents the results of the 
evaluation of the utility of AI-generated diets for children and provides related implications.
MATERIALS/METHODS: We developed 2 AI solutions for children aged 3–5 yrs using a 
generative adversarial network (GAN) model and a reinforcement learning (RL) framework. 
After training these solutions to produce daily diet plans, experts evaluated the human- and 
AI-generated diets in 2 steps.
RESULTS: In the evaluation of adequacy of nutrition, where experts were provided only with 
nutrient information and no food names, the proportion of strong positive responses to RL-
generated diets was higher than that of the human- and GAN-generated diets (P < 0.001). In 
contrast, in terms of diet composition, the experts’ responses to human-designed diets were 
more positive when experts were provided with food name information (i.e., composition 
information).
CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the 
development and evaluation of AI to support dietary planning for children. This study 
demonstrates the possibility of developing AI-assisted diet planning methods for children 
and highlights the importance of composition compliance in diet planning. Further 
integrative cooperation in the fields of nutrition, engineering, and medicine is needed to 
improve the suitability of our proposed AI solutions and benefit children’s well-being by 
providing high-quality diet planning in terms of both compositional and nutritional criteria.
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INTRODUCTION

Preschoolers spend a large portion of their time in out-of-home childcare, which consumes 
approximately half to 3-quarters of their daily energy intake outside the home [1,2]. In the 
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Organization of Economic Co-operation and Development (OECD) countries, over 80% 
of children aged 3–5 yrs participated in early childhood education and care [3]. Because 
the social participation of mothers has increased in developed countries, daycare service 
attendance rates have also shown a significant increase. Early childhood is a critical period 
for the prevention of diet-related diseases [4,5] and the development of food preferences 
and dietary patterns [6,7]. Therefore, not only families, but also childcare centers have a 
responsibility to provide healthy and safe meals, and these roles should be managed by 
nutrition and dietetics practitioners in childcare services [8,9].

Previous studies have suggested that health efforts and expert-led interventions are 
warranted to support healthy eating programs and practices in early childcare settings 
[10,11]. In South Korea, nutrition and meal planning guidelines are regulated and provided 
to childcare centers in consideration of the optimal nutrition standards for the growth and 
development of young children, including healthy dietary habits and food safety. However, 
the implementation of these dietary guidelines in childcare menus is challenging [12,13]. 
Among the requirements to the implementation of dietary guidelines, including knowledge, 
skills, social influence, and environmental context [14], the lack of human resources remains 
significant. In South Korea, most childcare centers do not have dedicated on-site registered 
dieticians capable of supporting menu planning, which is consistent with the guidelines, 
regulations (e.g., food allergies), and customization options in daycare centers. To overcome 
these issues, registered dieticians under the regional Centers for Children’s Food Service 
Management of the Ministry of Food and Drug Safety supervise their jurisdiction. A 
Cochrane systematic review reported that face-to-face training of cooks and monthly visits 
by dietitians led to a reduction in the saturated fat contents in children’s meals [15]. These 
studies have indicated that diet planning is a highly complex and resource-intensive task [16].

Among the various roles of dieticians in childcare centers, diet planning for children is 
critical to ensure adequate intake of nutrients to enable healthy growth and development 
in children [17]. Thus, dietitians are required to have knowledge of children’s development 
[18] and the ability to address the high design complexity associated with the large number 
of food items available for children. Meanwhile, monthly diet plans must consider the 
cost-effectiveness, safety (e.g., food allergy), and hygiene of cooking facilities, as well as 
the availability of various types of labor, including skilled cooks. Recently, the effectiveness 
of a web-based menu planning intervention for childcare services has been investigated to 
improve compliance with dietary guidelines [3,19]. An Australian randomized controlled 
trial of this intervention found that it was associated with a significant improvement in 
the consumption of fruit and dairy foods [3]. Additionally, a study on the usefulness of 
web-based programs reflected the economic value of menu planning with reduced costs 
[20]. Given the above concerns, advanced systems need to be developed to help dietitians 
efficiently plan diets and implement appropriate dietary guidelines.

Artificial intelligence (AI) is expected to provide diet-planning solutions by applying 
professional knowledge automatically and by addressing the complexity of optimal diet 
planning efficiently. Machine learning enables applications with performance levels that are 
close to those of skilled experts. However, to the best of our knowledge, no machine-learning 
models have been developed to assist dieticians in designing diet plans for children. In this 
study, we developed 2 AI solutions for children and evaluated their effectiveness.
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MATERIALS AND METHODS

Food and diet plan datasets
Because we intended to provide complete-diet-level plans rather than menu-level food lists, 
we defined our diet recommendation system under the “diet planning” problem, including 
the constraints of diet-related problems and considering psychological parameters such as 
color, texture, shape, and flavor [21]. To train machines for diet planning, we used a dataset 
of 1,726 foods including information on nutrition, ingredients, and food group categories. 
The nutrition section provided data on 14 nutrients, including energy, carbohydrates, 
protein, fat, trans fats, saturated fats, total dietary fiber, calcium, iron, sodium, phosphorus, 
vitamin A, vitamin C, and vitamin D, that come in a standard serving of each food. A section 
of 298 ingredients indicated whether each food item contained a specific ingredient or not. 
For example, kimchi contains cabbage but not pumpkin; therefore, the cabbage column is 
assigned a value of 1 and the pumpkin column is assigned a value of 0. The group section 
indicates the types of food, such as soups, main dishes, and side dishes. In this dataset, foods 
were grouped according to a list of dishes in the Korean cuisine.

The 220 diet plans for AI training was obtained from publicly available standard diets from one 
of the Centers for Children’s Food Service Management in Gyeonggi-do, which was established 
by the Ministry of Food and Drug Safety to support hygiene and nutrition management in 
daycare centers. The diet provided in this dataset was designed by professional dietitians. 
Because the training diet plan dataset was from a daycare center, the menu composition 
included a morning snack, lunch, afternoon snack, and dinner, but not breakfast.

Development of the 2 AI solutions
The first AI mimicked existing diets designed by human dieticians using a generative 
adversarial network (GAN) model (Fig. 1) [22]. The GAN-based AI was designed with a 
focus on the ability to learn “composition patterns” underlying the records of human-made 
diets (e.g., identifying the co-occurrence of different foods) and was able to reproduce a 
diet created by human nutritionists. In GAN, the generator model (G) and discriminator 
model (D) are initially trained with real data. The purpose of G is to estimate the real data 
distribution, and the purpose of D is to distinguish between the real and generated data. G 
generates data that mimic real data based on the estimated data distribution, and D returns 
the probability that the generated data come from real data. Based on the probability of 
return from D, G is trained to confuse D by generating realistic data. It is proven that the 
output of D converges to 0.5 when G and D are ideal (i.e., when G and D are well trained). 
Entering diet data directly into the GAN is not effective because the diet dataset does not 
involve all types of foods in the food dataset. In this case, the GAN generates a diet based on 
limited foods. To avoid this problem, we categorized foods using a clustering algorithm and 
transformed the ‘food-level’ diet data into ‘category-level’ diet data. For example, in real data, 
when 'food A' is entered into the GAN, it is expressed as ‘a food in category X’ (i.e., it does 
not specify what food it is). Consequently, the GAN outputs category-level data, which should 
be restored to food-level data by the random sampling of a candidate food in the category.

The second AI solution was designed to simulate multiple menu combinations to learn the 
optimal data design process policies using a reinforcement learning (RL) framework (Fig. 2)  
[23]. The proposed RL-based AI focuses on learning an “optimal strategy” for diet design 
processes by simulating a massive number of cases of food combinations and evaluating the 
cases using multiple criteria (e.g., calorie, carbohydrate-protein-fat ratio). The evaluation 
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outcome was then fed back to the AI to enable it to reinforce itself. First, we define the state 
as a diet that has a vector of length 14, in which each element is filled with a token assigned to 
each food. Second, the agent selects one element (i.e., the agent selects an action) from the 
14 elements of the diet vector and removes the token in the element. The environment then 
returns a new token to fill in the blank element. The vector with the added token becomes 
the next state, and the number of nutrient requirements fulfilled in the new state is given 
to the agent as the reward. We based the nutrient requirements for the diet design on the 
recommended dietary reference intakes (DRI) for Korean children aged 3–5 yrs (published 
by the Ministry of Health and Welfare, Sejong, South Korea). Third, the aforementioned 
process is iterated until the agent learns to select an action that always increases the reward. In 

https://doi.org/10.4162/nrp.2022.16.e45

Diet planning for children using artificial intelligence

Ramdom
select

Replace with cluster

One-hot encoding

Cluster 7
Braised mackerel

Braised hairtail
...

Braised mackerel with
daikon

Braised mackerel with
soysauce

Diet
(cluster)

7 ...

Diet
Braised mackerel

with daikon
...

Generative
model

(G)

Generated
data

Diet of May 3 White rice
Fish cake

soup
Boiled pork

slices
Cucumber 

salad
Kimchi

Diet of May 3
(cluster)

10 56 42 135 35

The purpose of G model is to generate data that
D model cannot discriminate with the real data.

Discriminative
model

(D)

Probability that
an input came from

the real data

Food 1
(White rice)

Food
Cluster

Food 2
(Fish cake

soup)

Food 3
(Boiled pork

slices)
Food 4

(Cucumber
salad)

Food 5
(Kimchi)

Diet of May 3

0 ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

0

0

0

0

0

10

1

0

0

0

0

35

0

0

0

0

1

42

0

0

1

0

0

56

0

1

0

0

0

135

0

0

0

1

0

Diet
(transformed)

Food 1

7

10... 0...
...... ... ...

......

(A)

(B)

Real data

Fig. 1. Data transformation (A) and restoration process (B) for diet planning with the generative adversarial network. 
G, generator model; D, discriminator model.

Pr
ov
isi
on
al

Pr
ov
isi
on
al



5/12https://e-nrp.org

other words, the agent repeats the diet design processes to learn a policy that maximizes the 
total return, which is similar to the practice and learning processes of human nutritionists. 
Specifically, deep Q-learning [23] was used as the training method.

Using the datasets of 1,726 food items and 220 daily diet plans, we trained AI solutions to 
produce daily diet plans for daycare centers in South Korea. An example of a diet plan created 
using the proposed RL is presented in Table 1. This study was approved by the Institutional 
Review Board (IRB) of the Kosin University Gospel Hospital (IRB file No. KUGH 2019-10-003). 
As the data used in the present study included only de-identified data, informed consent was 
not required.

Evaluation of the diet AI generating system
We conducted 2 surveys to evaluate the diet plans generated by AI in comparison with those 
generated by professional human nutritionists. The survey subjects consisted of dietitians 
who were dedicated to hospitals or children’s food service management centers, teachers 
in daycare centers, and pediatricians. In the first survey, we randomly presented 15 diet 
plans created by GAN, RL, and by human dietitians and provided a list of food names that 
were in the diets without the relevant nutrient information (e.g., the human-made diet was 
randomly selected from our standard diet databases). The questionnaire was categorized 
into 3 items: adequacy of nutrients, food composition, and overall evaluation (Table 2). The 
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Table 1. Examples of the reinforcement-leaning-produced diet plan in the first survey
Category Diet plan
Morning snack Yogurt Plain bread
Lunch Mushroom rice with nutritious ingredients Seaweed soup Grilled mackerel Seasoned cucumber (Empty)
Afternoon snack Grilled fish cake with ketchup Orange juice
Dinner Sanxian jajang rice Potato and kelp soup Potato salad Seasoned parsley and radish (Empty)Pr
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questionnaire concerning the adequacy of nutrients included the following questions: “Does 
the configured diet meet nutritional standards?” and “Is the carbohydrate, protein, and fat 
ratio appropriate?” The questionnaires on food composition style included the following 
items: “Are various food groups used evenly?” “Is the composition of the snack appropriate?” 
“Are various cooking methods used within each one-day menu?” “Does the diet plan avoid 
use of the duplicate ingredients?” and “Is the proportion of frozen and processed products 
appropriate?”

The second survey was conducted with voluntary consent from those who participated in 
the first survey. One week after the first survey, we administered the second survey to obtain 
the nutrient information from the same diet plan as that in the first survey, without the food 
name information (Table 3). We provided information on the DRI for Korean children aged 
3–5 yrs in the second survey to help the subjects compare the nutrients in the presented diets 
and menus. This survey included questions that were identical to those in the first survey, 
except those questions related to food composition were not present (Table 2). We used 
pairwise χ2 tests to compare the responses to the human-, RL-, and GAN-designed diets 
using Scipy 1.5.2 in Python 3.7.1.

RESULTS

Of the 41 participants, 38 reported their careers: 24 were dieticians, 9 were daycare teachers, 
and 5 were pediatricians. (Table 4). The average job experience duration was 9.18 yrs. The 
second survey comprised 27 participants from the first survey: 21 were dieticians, 3 were 
daycare teachers, and 3 were pediatricians.

https://doi.org/10.4162/nrp.2022.16.e45
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Table 2. Question list of the first and second survey
Category Question Answer type First survey Second survey
Adequacy of nutrients Does the configured diet meet nutritional standards? One of strongly agree, weakly 

agree, weakly disagree, or 
strongly disagree

● ●
Is the carbohydrate, protein and fat ratio appropriate? ● ●
Is the use of frozen and processed foods appropriate? ●

Foods composition style Are various recipes used within the one-day menu? One of strongly agree, weakly 
agree, weakly disagree, or 
strongly disagree

●
Does the plan avoid the duplicate use of same ingredients? ●
Is the composition of snacks appropriate? ●
Are various food groups used for the nutritional intake balance? ●

Comprehensive evaluation Overall, do you think this diet is appropriate for children aged 3 to 5? Yes or No ● ●

Table 3. Example of the diet form provided in the second survey

Category Morning snack Lunch Afternoon snack Dinner Sum
Energy (kcal) 136.20 682.97 223.18 345.35 1,387.70
Carbohydrate (g) 12.47 87.55 35.79 52.68 188.49
Protein (g) 12.36 12.97 3.60 5.43 34.36
Fat (g) 6.67 20.32 3.65 8.30 38.94
Trans fatty acids (g) 4.35 4.53 0.14 1.70 10.72
Saturated fatty acids (g) 0 0 0 0 0
Total dietary fiber (g) 0.62 6.93 1.97 2.50 12.02
Calcium (mg) 230.80 117.54 17.97 120.85 487.16
Iron (mg) 0.16 3.71 0.67 1.81 6.35
Sodium (mg) 76.60 1,204.85 185.59 834.74 2,301.78
Phosphorus (mg) 176.40 416.16 92.31 209.11 893.98
Vitamin A (μg RE) 201.93 180.77 55.19 75.59 513.48
Vitamin C (mg) 2.18 11.88 3.02 10.59 27.66
Vitamin D (μg) 0 8.66 0 0.04 8.70
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In the first survey, the proportions of positive overall diet evaluations were 82.4%, 43.7%, 
and 35.1% for the human-, RL-, and GAN-generated diet plans, respectively (all P < 0.001) 
(Fig. 3A, left). The proportions of strong positive responses to adequacy of nutrition were 
45.7%, 31.5%, and 26.2% for the human-, RL-, and GAN-generated diets, respectively (all P < 
0.005) (Fig. 3B, left). Interestingly, although the same diets were evaluated in both surveys, 
the results of the second differed from those of the first. The second survey provided only 
nutrient information without food names, and based on the proportion of positive responses, 
we determined that the overall RL-generated diets (86.7%) were superior to those of the 
human- (43.7%) and GAN-generated diets (28.5%) (all P < 0.001) (Fig. 3A, right). In addition, 
the RL-designed diets provided better nutritional adequacy (29.6%) than the human- 
(10.7%) and GAN-designed diets (5.6%) (all P < 0.001) (Fig. 3B, right). When evaluating 
the food composition style in the first survey, participants’ responses regarding the use of 
various food groups and appropriate snack compositions were more strongly positive for 
the human-designed diets (48.6% and 46.8%, respectively) than for the RL- (27.0% and 
28.0%, respectively) and GAN-designed diets (24.4% and 18.7%) (all P < 0.001) (Fig. 3C). In 
addition, there was a higher strong positive response for the items related to duplication of 
ingredients, appropriate frozen or processed food, and various cooking methods in human-
made diets than in the RL- and GAN-made diets (all P < 0.001).

DISCUSSION

To the best of our knowledge, this is the first study to demonstrate the development and 
evaluation of AI to support diet planning for children. The results of the 2 surveys indicate 
that most experts could not precisely evaluate the nutritional quality of diets (Fig. 3B) 
and that most experts considered composition style to be an important factor in dietary 
evaluation (Fig. 3C). In this study, we found that both composition style and satisfaction with 
nutrient requirements should be considered when planning children’s diets using AI.

Diet planning by registered dietitians has long been an important tool for implementing 
recommended dietary guidelines to improve diet quality and health [24]. In addition 
to adequate nutrient intake in diet planning, literature and textbooks on dietetics have 
emphasized the importance of composition style in diet planning [25]. Several factors that 
take into consideration the recipient’s eating habits, preferences, and menu styles, as well 
as nutritional quality in diet planning, have been reported. If food cultures or eating habits 
are not reflected in the composition of menus, regardless of how balanced and nutritionally 
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Table 4. Characteristics of the survey subjects
Characteristics First survey (n = 38)1) Second survey (n = 27)
Female 33 (86.8) 22 (81.5)
Occupation

Dietitian 24 (63.1) 21 (77.8)
Teacher at a daycare center 9 (23.7) 3 (11.1)
Pediatrician 5 (13.2) 3 (11.1)

Career (yrs)
Dietitian 9.2 ± 5.7 9.2 ± 5.8
Teacher at a daycare center 10.9 ± 11.5 7.3 ± 5.7
Pediatrician 7.4 ± 1.8 6.0 ± 1.7

Values are presented as number (%) or mean ± SD.
1)Of the 41 subjects in the first survey, 3 subjects did not report their occupation. The participants were not 
required to respond to the second survey.
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perfect a diet may be, the recipients will not consume it. The Academy of Nutrition and 
Dietetics in the US defines the role of dietitians as leading diet recipients to accept and 
consume nutritionally balanced menus [8]. In addition, different regions have their own 
culture-oriented criteria for evaluating the composition quality of diets [26,27]. For example, 
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important composition criteria in Korean diet planning include harmony of colors in foods, 
use of seasonal ingredients, and avoiding duplication of cooking methods [28]. The planning 
of traditional Japanese food involves the high consumption of seafood and soybean products, 
as well as relatively small portions of main and side dishes, and considers the combination of 
taste, smell, and tactile sensations of the ingredients as important [29]. In Southeast Asian 
cultures, most food is cooked by fast blanching or stir-frying using woks, which require only 
a relatively low amount of heat [30]. Each unique food culture and composition style is very 
difficult to specify in a mathematical model, yet it can be accommodated by machine learning.

Meanwhile, our research has limitations in that the development and evaluation of machine 
learning models involve a limited scope of datasets and experts. Although we prepared the 
dataset for the AI solution based on the diets used in the public Centers for Children’s Food 
Service Management, the dataset may not represent the comprehensive diet sets for Korean 
children, as it was used in a single institution and did not meet all the recommended daily 
intakes. Furthermore, the number of experts participating in the second survey was relatively 
small. Therefore, careful interpretation of our results is required. Nevertheless, this is a first 
investigation of the possibility and challenges of AI diet recommendations for children. 
Based on this work, we found that not only nutrients of menus but also their composition 
are very important in AI-based diet planning. It is challenging to define the composition of 
a diet, unlike the explicit knowledge of nutrients, such as the DRI of nutrients. This finding 
would be reflected in our next diet planning study with machine learning, which may extract 
the composition patterns from real diet planning and apply these patterns when generating 
diets. In addition, to overcome the limitations of the data, we are currently extending the 
food and diet datasets for machine learning, because there has been no benchmark large 
and qualified diet and food datasets accessible to the public. These datasets can be publicly 
available for future research on diet planning in children. After the development of a new 
AI diet planning method with a new dataset, incorporating feedback from more experts is 
needed for the validation of AI-equipped diet planning approaches. In addition, we identified 
that dietitians need to precisely evaluate the nutritional quality of diet planning for children. 
Further investigations to improve the performance of AI solutions based on the results of this 
study could be beneficial in diet planning tasks for dietitians in the future.

In future work, our next aim will be to develop and clinically test AI-based personalized diet 
management services [31] that can be used not only in daycare centers but also in hospital 
settings (e.g., children with multiple food allergies, inflammatory bowel diseases, diabetes 
mellitus, and obesity). Recently, there has been an increasing trend of children with food 
allergies [32] and who are vegetarians [33], and registered dietitians in daycare centers or 
school meal programs are required to prepare separate meals for them. For children with 
food allergies, dietitians not only consider food allergen elimination in meals but also 
prepare alternative foods tailored to provide appropriate nutrients [34]. In addition, care 
should be taken to avoid cross-contamination during the cooking process [35]. In the case of 
vegetarian children and adolescents, some vegetarian diets may be low in specific nutrients 
such as calcium and vitamin B12, and attention is needed to support their healthy growth 
and development [36]. Given the time- and resource-consuming processes of diet planning 
and clinical nutrition tasks, information and communication technologies and AI are 
expected to serve a complementary role in these fields [37-39]. As with our related ongoing 
work [40,41]. we hope that the present work will serve as a foundation for future studies 
on the development of AI diet planning solutions for different types of patients in different 
countries and cultures.

https://doi.org/10.4162/nrp.2022.16.e45
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In summary, this study shows the possibility of developing AI to plan diets for children. We 
found that the developed AI was superior to human nutritionists in designing nutritionally 
appropriate diet plans, but inferior in terms of compositional quality. Further integrative 
expert cooperation among dieticians, engineers, and pediatricians is needed to improve 
the capability of the proposed AI solution in order to satisfy expectations relating to meal 
composition and to benefit the well-being of children.
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